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Symmetries of the S matrix for massless particles 

Dieter Strube 
Institut fur Theoretische Physik, D-3400 Gottingen, Federal Republic of Germany 

Received 8 February 1985 

Abstract. Within the framework of local relativistic quantum field theory we consider 
generators Q of symmetry transformations acting additively on asymptotic particle states 
according to a given equation. If there is a mass gap this equation can be derived for Q 
defined as an integral over a conserved local current. For simplicity, we consider only the 
case that all asymptotic fields are scalar ones. Assuming that the generator Q in this 
equation is also well defined for massless particles and that elastic scattering occurs at 
least in an open subset of the scattering manifold, it is shown that Q is at most a linear 
combination of the generators of the conformal group and internal symmetries. Using the 
result that massless particles do not interact in a local, dilatationally invariant quantum 
field theory the conformal group in our result has to be restricted to the Poincart group. 
Analogously to the massive case, Q is therefore at most a linear combination of the 
generators of the Poincare group and internal symmetries. 

1. Introduction 

As shown by Garber and Reeh (1979a) a generator Q representing an additive 
conservation law in an asymptotically complete local relativistic quantum field theory 
without zero mass particles and with a mass gap above the vacuum is characterised by 

i[Q, 4“,“x) l=PKA(x,  a x ) + Y ( x ) ,  QO=O (1.1) 

(summation with respect to A ) .  Here, $r((x) (‘ex’ stands for ‘in’ or ‘out’) are free 
asymptotic fields of mass m,, O is the vacuum vector and PKA are polynomials in x E OX4 
and derivatives ax = ( a / a x ” ) ,  vanishing for unequal masses mA f m,. That is Q on 
one-particle states commutes with the mass operator. The PKA do not depend on the 
index ex; therefore Q commutes with the S matrix. 

Garber and Reeh (1979b) investigated the case of field theories having only scalar 
asymptotic fields and, starting from (1.1) and under the assumption that all asymptotic 
particles have elastic interaction with each other, it was shown that Q can only be a 
linear combination of the ten generators of the Poincark group and the generators of 
internal symmetries. In the present paper, the case is considered that the scalar 
asymptotic fields + “ “ ( x )  have zero mass. Concerning the interaction, we assume for 
the zero mass particles: 

(i) For each particle there is another particle such that elastic scattering occurs 
between them on some open subset V of the set of momenta allowed by energy and 
momentum conservation. 

(ii) The set of zero mass particles does not decompose into subsets which do not 
interact with each other. 
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Further, we assume that Q in (1.1) is also a well defined operator for scalar 
asymptotic fields of zero mass 

i[Q, 4ekx(x)1= pkl(x, ax)4;"(x)* (1.2) 

It is our aim to show that p k l  is at most a linear combination of the 15 generators of 
the conformal group and internal symmetries. The proof will be reduced to the special 
cases of translationally invariant generators and generators for which the associated 
polynomial P k l  is linear in the derivatives. 

2. Translationally invariant generators 

Here, Jex( p )  denotes the Fourier transformed fields. 
Now the proof of theorem 2.3 in Garber and Reeh (1979b) can be adopted with 

an obvious change of notation (the solution of the functional equation (2.4) has to be 
modified slightly) to obtain for a translation invariant generator a result, which is 
analogous to the massive case. 

Theorem 2.1. Let Q be a translation invariant generator 

$0, $ekx(p)l= Rkl(ip)6;"(p) 

with scalar asymptotic fields $rx( p )  of zero mass. Assume that the interaction assump- 
tions ( i )  and (ii)  are fulfilled. Then 

Rkl(iP) = akl('p + aoao(p) )  + c k l  

with constants a, a', ckl and w ( p ) : =  IpI. 

3. Q as a linear combination of the generators of the conformal group 

In the following we consider a generator Q with 

i[Q, 4ekX(x)1= {akf(X)+ b&(x)ap)$'fx(x). (3.1) 

Here, ak,(X) and bkl(x) are polynomials in x E I W ~  so that Gkl(x, a,) := a k l ( X )  + bpkl(x)a, 
is linear in the derivatives. The property that Q on one-particle states commutes with 
the mass operator P,P", [ Q, P , P " ] ~ ~ ( x ) f l  = 0, is equivalent to 

apa"(Pkl (X,  a.x)4tx(x)) -(pkf(x, dx)apafi4tx(x)) = o  (3.2) 

Commuting (3.2) with 4 : " ( y )  and using the Schwartz normal form (Schwartz 1961) 
with pk,(x, a,) from (1.2). 

[4t"(x), +:"(y)]  = -i8,,A,o,(x - y), one obtains 

o=!apap,  pkl(x, ax)lf(x) (3.3) 

with every solution f of the Klein-Gordon equation of zero mass. For the special 
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Lemma 3.1. Any polynomial GkI(x ,  a,) obeying (3.4) can be written as a linear 
combination of a,, x,d, - xualr, x“a,, 2xpxya,  + 2xp - x2ap and an arbitrary constant. 

Roo$ For fixed but arbitrary indices k, 1 (3.4) reads 

0 =[d,d”, G ( x ,  d , ) l f (x )  = I(d,d’G(x, a,)) +2(a’G(x, ~ , ) ) a , } f ( x )  
= {(d,a”a(x)) +[2(a’a(x)) + ( a p d u b ” ( ~ ) ) ] d p  

+ (dubP ( x )  + aPb“ (x))a,d,} f (x) .  

Since an arbitrary multiple of d,d’ is the only annihilator of every solution f ( x )  of 
a,a”f(x) = 0, we obtain, after comparing the coefficients of the differential operator in 
the curly bracket, a system of linear partial differential equations for the polynomials 
a ( x )  and b’(x) 

a ( x )  = 0 

a ,~‘b”(~)+2a*a(x)  = O  

a ” b P ( x ) + a P b a ( x ) = h ( x ) g u p ;  

A ( X )  = 2dob0(x) = -2bb‘(x), j = 1,2,3.  

They can be solved and the solution is (see equation (A10)) 

a(x )=2cx+r  

b” ( X )  = 2 CXX’ - X’C” + 2w “”xu + dx” + b” 

where cx = c’x, x2  = x”x, and r, d ,  b’, c” and w” = - w y p  are 16 real constants. 
Therefore, Gkl in (3.4) can be written as 

G k l ( X ,  a x )  = % ( X )  + b k l ( X ) a ,  

= C f ~ ( 2 X , X ” d . + 2 X p  - X2d,)f d k l ( X Y d ,  + 1) 4- br,dr 

+ 4 t”(xva ,  - x,a,) + ckl ( 3 . 5 )  

with c k l =  rkl - dkl so that lemma 3.1 is proven. 

If the coefficients C”klr dkl, b$ and w f ;  do not depend on the indices kl, Q would be 
on one-particle states a linear combination of the generators of the conformal group 
and internal symmetries Ckl where the former are defined for scalar fields 4? as follows 
(see Mack and Salam 1969) 

generator of 
dilations 
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4. General case 

For a general generator Q in (1.2), assume that Pk)(x ,  a,) has degree N in x. Then an 
arbitrary generator can be put into the form 

(summation convention!) with coefficients c symmetric in p l  . . . p n  and in v, . . . vm 
respectively. 

In order to reduce the degree of PkJ in x to N =  2, we consider at first Q"1"'"" := 
i[i[i . . . $0, P p l ] ,  Pp2], . . . P P ~ b , ] ,  which is translationally invariant 

i[QPl-P,u, ~ Y ( x ) ]  = (ap! . . . a P N P k r ( X ,  a , ) ) 4 y X ( x )  = N!a,, . . . a , , m ~ ~ ; . . ~ P V ; Y i ~ . . Y m  4 ; " ( x ) .  (4.2) 

Application of theorem 2.1 leads to 
m - - ~klip"CP1...P,v:Y + C y N  on p 2  = 0. (4.3) 

.m p I . . . p N : Y l . , . Y  

PY, * ' ' p v m C k l  

Inserting (4.3) into (4.1), we obtain 

i[ Q, r $ Y ( X ) ]  = { 8k.CP1"'P" x,, . . . xPNaY + C ; ; " ~ ~ ~ X , ~ . , . X ~ , ~  

Repeating the preceding calculation ( N  - 2) times yields a polynomial &(x ,  a,) of 
degree two in x only 

; U I  ... Y m  i[Q, + Y ( x ) ]  = {xP,x,,a., . . . a , m ~ ~ ; P 2 ~ Y 1 " ' Y m  + x,&l . . . aV,,,ckJ 

+a,, . . . aVmc;)- 'm}4t"(x).  (4.9) 
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Using (4.3), (4.6) and 
c,,,2;y = a@,gh’ + a%gh - a ’g*1”2 (4.10) 

with a’:= cooo, a k  := cko0 ((A8) with ~ * I , z ; ”  

i[Q”, ~ F ( x ) ]  = { 2 !  8kICPp2~YX,z~Y+av, . . . a ,mc ’ , f ’ ” i ~~~“m}~ ;x (x )  

Since M*2” is a symmetry generator, 6” := Q” - aW2Mp2” is a generator too, with 

i[@, ~ F ( X ) I  = { 2 !  SkfaPxa+a., . . . a,mcP,;“~. . . ” - }~;x(x)=:  &(x, a,)4yX(x). (4.1 1 )  

To show m s 1 in (4.11) we apply to (4.11) an infinitesimal Lorentz transformation 
Map, which leads to a translationally invariant generator 

c P I ’ L ~ ; ”  and a, = c p ) ,  (4.5) reads 

= { 2 !  Skf[aPxa+ a,,(xCL2aP - xpaP2)]+a,, . . . a,mc’ , f ’ “ i . .~”m}~~x(x) .  

i[OP, MUPI = [ i [Qp ,  ~ a p l ,  ~ F ( X ) I  
=[(xaap -xpaa), @L(x,  ~ , ) I ~ Y ” ( X )  

= [xaap -xpaa, a,, . . . aVmc’,;”l “ ” m ] 4 9 ” ( ~ )  
= m(gp,,aa - gu,,ap)av2 . . ~ ~ , ~ c ~ f ~ y l ~ ~ ~ y ~ ~ ~ ” ( x ) .  

Theorem 2.1 implies 

(4.12) ” ; U  , . . . U m  on p2 = 0. . m  
1 py, * . . P”,Ckf = Sklicp-”p, + c& 

Together with (4.10) and cr / ’L2 = 0 ((4.6) for N = 2)  this yields for Q in (4.9) 

i[Q, + T ( x ) ]  = {Skl[2ax(xd) -x2aa+ c’’~~’’x,,~,]+ c&x, +a,, . . . a , , ~ ~ ; ~ ~ ’ ~ m } + t ” ( x )  

=: pkf(x, & ) 4 ; ” ( x > .  (4.13) 

Inserting &(x,  a,) into (3 .3) ,  we get 

(C f , -Sk r2a~)aJ - (X )  =o.  (4.14) 

Now we have to consider two cases: 
(i) At least one of the coefficients a m  does not vanish: a” # 0. Then from (4.14) 

cfl = Skf2ap and (4.13) reads 

i[Q, ~ Y ( x ) ] =  {Skf[a+(2x,xa+2x, -x2a,)+ c~~”x,a, ]+a, , .  . . a ,mc ; ; . .~v - }~ fx (x ) .  (4.15) 

Using again (3.3), we get 

[ d P d c l ,  CI”;YX,dy]  f ( x )  = 0 (4.16) 

and by lemma 3.1: 

cp;”x,a,= dxa+d”(x,a,-x,a,) (4.17) 

with d := cm and uap := c ~ ; ~ ,  we obtain for Q in (4.15) 

i[ Q, 4 ‘k“( x )I = { SkI [ a ( 2 ~ ~ x 8  + 2 x, - x’d, ) + w ( x, d - x,a, ) + dxa] 

+a,, . . . a,mc,”;”’Y“}(b:”(x) 

=: p k i  ( X, 

respectively for Q’ := i[ Q, P P I :  

) 4 f ” ( x ) (4.18) 

i[QP, 4’k” (x) l=  {Skf[2aP(xa+ 1) +24,(xpap - x p a w )  + c p ; ” a , ] } ~ f x ( x ) .  
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Introducing u P D  := Q” - 2 a , M F P  - cP’”P,, which is a symmetry generator, we have 

i[a”D, ~ Y ( x ) ] =  6k12aP(xa+ l ) 4 Y x ( x ) .  

Since u p  # 0, it is shown that dilatations are symmetries of the S matrix. To show 
finally m <  1 we apply to (4 .18 )  a scale transformation U ( h ) 4 ? ( x )  U+(A)  = A ~ ~ ( A x )  
to get for the scale transformed generator QA := U(A)QU+(A) 

[Qh, $JekX(x)I= Pki(A-’x,  A a , ) 4 t x ( x )  

= { S k i [  A-’Up(2X,xd + 2x, - X’d , )  + W ’ ” ( X , d V  - xvd,)] 

+ Ama, ,  . . . a,,c;; y m } ~ ~ x ( x ) .  (4 .19 )  

Now consider the generator QT:=limA,,A-MQ,,, where M is the degree of the 
polynomial XmsO A”d,, . . . a,,,c;; u m .  Q;P is a symmetry of the S matrix and transla- 
tionally invariant 

M 

i[Q?, 4 Y ( x ) ]  =d,, . . . d v M C ; ;  y w $ J ; x ( x ) .  

Theorem 2.1 implies M = 1 so that imp,, . . . pY,c;I 
first case we obtain from (4 .18)  the following result 

i[Q, 4 Y ( x ) ] = { S k , [ a ~ ( 2 x , x d + 2 x , ,  - x 2 a , + d ( x a + 1 )  

= SklicYpv f ckl. Therefore, in the 

+ W ~ ” ( X , ~ ~  - x,a,) + c”d,]+ r k l } 4 S x ( x )  

where rk/ := ckl - dSk, are the internal symmetries. 
Hence, Q is a linear combination of the generators of the conformal group and 

internal symmetries. (This result is compatible with that of Haag et a1 (1975) ,  where 
supersymmetries are considered.) Furthermore, each of the generators of the conformal 
group is a symmetry of the S matrix. This can be seen from (4 .17 )  after considering 
limA,o A Q A ,  which shows that a*K, is a symmetry of the S matrix and after applying 
an infinitesimal Lorentz transformation M a p ,  which shows that each K ,  is a symmetry 
of the S matrix. 

(ii) In the second case we have to consider u p  = 0, p = 0 , 1 , 2 , 3 .  Then from (4 .18 )  

i[Q, ~ e k X ( X ) ] = { ~ ~ ~ [ ~ ~ ’ ( X , ~ a . - X , ~ , ) + d X ~ ] + ~ v ,  . . . av,c;; u m } 4 e x ( x ) .  

Consider 6 := Q - wWyM,, for which 

$6 4ekx(X)]={6k1dXd+av,.. . dv,C;; Y m } 4 7 X ( X ) .  

Analogously to the derivation of (4 .12)  from (4 .11 ) ,  we obtain impy, . . . pv,c;; ym = 
Sklic”p, + ckl to get the following result 

i[Q, Q l ~ ( ~ ) ] = ( S k ~ [ ~ ~ ” ( ~ , d , - x , a , ) + c ~ a , + d ( x a +  l ) ] +  r k , } 4 f x ( x )  

with rkl := Cki - dskl. 
Therefore, in this case Q is a linear combination of the generators of the PoincarC 

group, the generator of dilatations and internal symmetries. Furthermore, each of 
these generators is a symmetry of the S matrix. 

In each case we have shown that dilatations are symmetries of the S-matrix. Now, 
for example, from Buchholz and Fredenhagen (1977)  one knows that in a local 
dilatationally invariant quantum field theory of massless particles the S matrix is trivial. 
In our calculation where, by assumption, the S matrix is non-trivial, the coefficients a’l 
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and d therefore have to vanish so that Q is as in the massive case a linear combination 
of the generators of the PoincarC group and internal symmetries. 

Appendix 

Consider the polynomials a ( x )  and b”(x),  ,U = 0, 1,2,3,  fulfilling the following system 
of linear partial differential equations 

d,d”u(x)=O (A1 1 
d a d ” b ” ( x ) + 2 ~ ” a ( x )  = O  (‘42) 

(‘43) 
d”bP(x)+dPb”(x)  = A(x)gaP, 

A(x)=2dob0(x) =-2dkbk(x) k = 1,2,3.  

They can be solved by putting 

a ( x )  = a+x,a”+xx,,x,,a”’)’”2+. . .+x,, . . . x U”’” ’”~  

(A41 
”“ 

b “ ( x ) =  b “ + x , b ” ~ “ + ~ , ~ x , ~ b ” ~ ” ~ ~ ” + . . . + ~ ~ ~  . . . ~ , ~ b ~ l . . + ” ~ ”  

where a, b“, a”~.””r and b”l...”rg‘ , r = 1,2, . . . , n are unknown coefficients, symmetric with 
respect to permutation of the indices ,U] . . . ,U, for r = 2,3, . . . , n, and n is the highest 
degree of a ( x )  or b“(x).  Inserting (A4) into (A2) and (A3), we obtain after comparing 
coefficients 

(A5) 

(‘46) 

(A71 

ba.6 + b$.“ = 2bOOg@ = -2bkkg4 

bPa$ + bpi%“ = 2bWO.og“P = -2bPkkg“@ 

+ br,...P,P,a = 2bF2...P ,o,og”P = -2b~,...p,k,k U P  g bP2...P,a3P 

f o r k = l , 2 , 3 a n d r = 3 , 4  , . . . ,  n. 

boo’=: CO and bk0,O=: c k  and that 
It can be easily shown that bPaSP has only four linear independent coefficients 

c”g”P + c”gPP - CPg”n* (A81 

= O  for r = 3 , 4 , .  . . , n. (‘49) 

bfi”,P = 

Equation (A7) then implies 
bP2...rrasP 

Since from (A8) b”(x)  is a polynomial of degree two in x, we see from (A2) that a ( x )  
is a polynomial of degree one in x. Then from ( A l )  and (A2) we get U ”  = 2c”, 
~ ( x )  = a + 2cx. Putting a =: r, boo = -bkk =: d, k = 1,2 ,3  and bap =: w p a  = - w , a # P  
((A5)), we get from (A8) the following result 

a ( x )  = 2cx+ r 

b ( x ) = 2 cxx ” - X* C” + 2 w + dx ” + b ”. 
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